Intro - Day 2
Everything for today is posted under day 2 of:

www.astroblend.com/ba2016

For the 2-Body problem we compared the analytical and numerical solutions
—ound that At << P for accurate solutions
How is this applicable to other simulations? (tgyn, teross)

http://www.astroblend.com/ba2016

Intro - Day 2
Everything for today is posted under day 2 of:

www.astroblend.com/ba2016

of the ellipse

Rp =a(1-e)

For the 2-Body problem we compared the analytical and numerical solutions
—ound that At << P for accurate solutions
How is this applicable to other simulations?{tdyn, tcross)

http://www.astroblend.com/ba2016

The crossing time and virial equilibrium

» The system “quickly” reaches a “steady state”

» The steady state is in “virial equilbrium”, when the virial
equation is approximately satisfied:

2T +V =0

N

1

. Z miv? (Kinetic Energy)
i=1

N
m;m;
]r-J—I- (Potential Energy)
.)

Mass, length and time scales

» Total mass

» Characterise system size by “virial radius” R defined by
GM?

V =
2R’

where M is total mass

» Characterise speeds by (mass weighted) mean square speed

2 _ 21
M

"4

» Define time scale

2R
tee = — (“Crossing time")
v

Mass, length and time scales

» Total mass

» Characterise system size by “virial radius” R defined by
GM?

V =
2R’

where M is total mass

» Characterise speeds by (mass weighted) mean square speed
2 _ 2T
M

"4

» Define time scale

2R
tee = — (“Crossing time”)
v

At << ter comprable to At << P

Significance of the crossing time

» Time scale of cold collapse
» Time scale of approach to virial equilibrium

» Time scale of orbital motions in virial equilibrium

For hydrodynamical simulations where particles interact with gas

properties (heating for example) and gravity the condition is
Something ||ke At << tcr W|th tcr ~ R/Cs

Intro - Day 2
Everything for today is posted under day 2 of:

www.astroblend.com/ba2016

For the 2-Body problem we compared the analytical and numerical solutions
—ound that At << P for accurate solutions

How is this applicable to other simulations? (tgyn, teross)

Methods to “test” the accuracy of our simulations? (Conservation of energy
and momentum)

http://www.astroblend.com/ba2016

Intro - Day 2
Everything for today is posted under day 2 of:

www.astroblend.com/ba2016

For the 2-Body problem we compared the analytical and numerical solutions
—ound that At << P for accurate solutions

How is this applicable to other simulations? (tgyn, teross)

Methods to “test” the accuracy of our simulations? (Conservation of energy
and momentum)

http://www.astroblend.com/ba2016

Calculate Energy & Angular Momentum for Euler’s Method

force/mass for particle mi

def calcAcc(mj, ri, rjd:
mag_r = np.sqrt((ri-rj).dot(ri-rj))
return -G*mj*(ri - rj)/mag_r**3.0

energy
def calce(mi, mj, ri, rj, vi, vj):
energy = 1/2*ml*v1**2 + 1/2*m2*v2**2 - G*ml*m2/Irl -

angular momentum
def calcL(mi, mj, ri, rj, vi, vj):
ang. mom. = ml*rl X vl + m2*rZ X vZ

initial x/y/z coords of masses and their velocities...
r_eu = [nP-GVVQY([[O-s 0-, 0']9 [Pp, 0., 0-]])]
- [nP-GVVQY([[O-s 0-, 0']9 [0-, Vps 0-]])]

| = 10000 # number of steps over which to do our calculation
le6 # seconds per step

time array for Euler integration
| = np.linspace(@, dt*n_eu, n_eu)

energy array

* momentum array

loop and calculate
for n in range(l,n_eu):
vi_new (acceleration from mass 2)*dt + vl_old
vZ_new (acceleration from mass 1)*dt + vZ_old
rl_new 1/2*Cacceleration from mass 2)*dt*dt + vl_old*dt + rl_old
rZ_new 1/2*Cacceleration from mass 1)*dt*dt + vZ_old*dt + rZ_old
v_eu.append(np.array([vi_new, vZ_new]))
r_eu.append(np.array([rl_new, rZ_new]))
#e_eu.append(calcE(ml, m2, rl, r2, vl, vZ))# note, 1S 1 step behind
#1_eu.append(calcL(ml, m2, rl, r2, vl, vZ))# note, 1S 1 step behind
for plotting, just get xX/y coords for mZ, we assume
¥ ml 1s fixed at (0,0,0)

W o= [J

y_cu = [J
for n in range(@, n_eu):
x_eu.append((r_eu[n][1,0] - r_eu[n][0,0])/AUinCM)

y_eu.append((r_eu[n][1,1] - r_eu[n][©,1])/AUinCM)

Calculate Energy & Angular Momentum for Euler’s Method

plot x/y coords
fig, ax = plt.subplots(l, figsize = (10, 10))
fig.suptitle(' Coordinates Plot')

ax.plot(x_an, y_an, linewidth=5)
ax.plot(x_eu, y_eu, linewidth=3)
ax.plot(0.0, 0.0, "kx')
ax.set_xlabel('x in AU")
ax.set_ylabel('y in AU")
#ax.set_xlim(- 3)

3,
#ax.set_ylim(-3, 3)

fig_E, ax_e = plt.subplots(l, figsize = (10, 10))
fig_E.suptitle('Energy Plot")

E calc 1s 1 step behind so [1:]

ax_e.plot(t_eu[l:], np.repeat(e_an/e_eu[@], len(t_eu[l1l:])), linewidth=5)
ax_e.plot(t_eu[l:], e_eu/e_eu[@], linewidth=3)

ax_e.set_xlabel('Time in sec')

ax_e.set_ylabel('Energy(t)/Energy(t=0)")

fig_L, ax_1 = plt.subplots(l, figsize = (10, 10))
fig_L.suptitle('Angular Momentum Plot"')

L calc 1s 1 step behind so [1:]

ax_l.plot(t_eu[l:], np.repeat(l_an/1_eu[@], len(t_eu[l1l:])), linewidth=5)
ax_l.plot(t_eu[1:], 1_eu/1_eu[@], linewidth=3)

ax_l.set_xlabel('Time in sec')

ax_l.set_ylabel('Angular Momentum(t)/Angular Momentum(t=0)")

plt.show()

