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ABSTRACT

The giant impact phase of terrestrial planet formation establishes connections between super-Earths’
orbital properties (semimajor axis spacings, eccentricities, mutual inclinations) and interior composi-
tions (the presence or absence of gaseous envelopes). Using N -body simulations and analytic argu-
ments, we show that spacings derive not only from eccentricities, but also from inclinations. Flatter
systems attain tighter spacings, a consequence of an eccentricity equilibrium between gravitational
scatterings, which increase eccentricities, and mergers, which damp them. Dynamical friction by
residual disk gas plays a critical role in regulating mergers and in damping inclinations and eccen-
tricities. Systems with moderate gas damping and high solid surface density spawn gas-enveloped
super-Earths with tight spacings, small eccentricities, and small inclinations. Systems in which super-
Earths coagulate without as much ambient gas, in disks with low solid surface density, produce rocky
planets with wider spacings, larger eccentricities, and larger mutual inclinations. A combination of
both populations can reproduce the observed distributions of spacings, period ratios, transiting planet
multiplicities, and transit duration ratios exhibited by Kepler super-Earths. The two populations,
both formed in situ, also help to explain observed trends of eccentricity vs. planet size, and bulk
density vs. method of mass measurement (radial velocities vs. transit timing variations). Simplifica-
tions made in this study — including the limited timespan of the simulations, and the approximate
treatments of gas dynamical friction and gas depletion history — should be improved upon in future
work to enable a detailed quantitative comparison to the observations.

1. INTRODUCTION

The Kepler Mission discovered thousands of candidate
“super-Earths,” planets between the size of Earth and
Neptune (e.g., Borucki et al. 2011a,b; Batalha et al. 2013;
Burke et al. 2014; Mullally et al. 2015). They exhibit a
wide range of bulk densities, anywhere from ⇠10 g/cm3

to less than that of water (e.g., Carter et al. 2012; Wu
& Lithwick 2013; Lopez & Fortney 2014; Weiss & Marcy
2014; Dressing et al. 2015; Wolfgang et al. 2015). Much of
our knowledge of their orbital properties comes from the
subset of systems each containing two or more transit-
ing planets. Statistical studies have found that systems
of multiple super-Earth “tranets” (planets that transit;
Tremaine & Dong 2012) have small eccentricities (Moor-
head et al. 2011; Wu & Lithwick 2013; Hadden & Lith-
wick 2014; Van Eylen & Albrecht 2015) and small mutual
inclinations (Fang & Margot 2012b; Figueira et al. 2012;
Fabrycky et al. 2014) of a few percent or less.
The orbital spacings of tranets (Lissauer et al. 2011;

Fang & Margot 2013; Fabrycky et al. 2014; Lissauer et al.
2014; Malhotra 2015; Ste↵en 2016) have been a particu-
lar focus for theoretical studies of formation (Hansen &
Murray 2013; Petrovich et al. 2014; Malhotra 2015), sta-
bility (Pu & Wu 2015), dynamical excitation (Tremaine
2015), and migration (Lithwick & Wu 2012; Batygin
& Morbidelli 2013; Delisle & Laskar 2014; Goldreich &
Schlichting 2014; Hands et al. 2014; Chatterjee & Ford
2015; Deck & Batygin 2015). In this paper, we define the
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as the semi-major axis di↵erence �a ⌘ a2 � a1 between
adjacent planets, normalized by their mutual Hill radius:
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where a is the semi-major axis, Mp is the planet mass,
and M

?

is the stellar mass. The tranet spacing distri-
bution peaks at � ⇠ 20. Fang & Margot (2013) found
a similar spacing distribution for the underlying plan-
ets, assuming a single population of planetary systems
drawn from independent distributions of mutual inclina-
tions, spacings, multiplicities, and planet sizes. Planet
spacings of � ⇠ 20 — shrinking to � ⇠ 12 for the high-
est multiplicity systems — lie safely outside the empirical
stability limit of � ⇠ 10 (Chambers et al. 1996; Yoshi-
naga et al. 1999; Zhou et al. 2007; Smith & Lissauer 2009;
Fang & Margot 2012a; Lissauer et al. 2014; Pu & Wu
2015). Studies of tranet multiplicity — a property that
depends on both spacing and mutual inclination — have
found a “Kepler dichotomy,” i.e., a need for two popula-
tions to account for an apparent excess of single tranet
systems over multi-tranet systems (Lissauer et al. 2011;
Johansen et al. 2012; Hansen & Murray 2013; Ballard &
Johnson 2014; Moriarty & Ballard 2015).
Here we explore how the orbital properties of super-

Earths — their spacings, eccentricities, and inclinations
— originate from the circumstances of their formation
from primordial disks of solids and gas. We will un-
cover correlations between these orbital properties and
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planet compositions (gas-enveloped vs. rocky), correla-
tions that are not due to observational bias and that are
currently neglected in Kepler population studies (e.g.,
Lissauer et al. 2011; Fang & Margot 2012b; Figueira et al.
2012; Tremaine & Dong 2012; Fang & Margot 2013; Bal-
lard & Johnson 2014; Fabrycky et al. 2014; Ste↵en 2016).
We work in the context of in-situ formation (e.g., Hansen
& Murray 2012, 2013; Chiang & Laughlin 2013; Lee et al.
2014; Dawson et al. 2015; Lee & Chiang 2015, 2016; Mo-
riarty & Ballard 2015; see also Inamdar & Schlichting
2015), simulating the assembly of super-Earths starting
from isolation masses.
We devote especial attention to the origin of super-

Earth spacings. The spacing distributions of planets and
protoplanets have been explored theoretically from sev-
eral vantage points. One consideration is stability. The
timescale for orbit crossing is known empirically to in-
crease exponentially with the Hill spacing � (Yoshinaga
et al. 1999; Zhou et al. 2007; Pu & Wu 2015). The spac-
ing must be wide enough for the orbit crossing time to
exceed the system’s age. Tremaine (2015) presented an-
other point of view from statistical mechanics. Other
perspectives derive from considerations of planet forma-
tion. For isolation masses (a.k.a. oligarchs) accreting
small bodies in their feeding zones, a spacing equilib-
rium is achieved between mass growth, which decreases
the separation in Hill radii, and orbital repulsion driven
by gravitational (a.k.a. viscous) stirring (Kokubo & Ida
1995, 1998). In the particle-in-a-box approximation for
planet formation by coagulation of small bodies (e.g.,
Safronov & Zvjagina 1969; Greenzweig & Lissauer 1990;
Ohtsuki 1992; Ford et al. 2001; Goldreich et al. 2004; Ida
et al. 2013; Petrovich et al. 2014; Johansen et al. 2012;
Morrison & Malhotra 2015), random velocities are lim-
ited to the surface escape velocity vesc from the most
massive body. Schlichting (2014) applied this principle
to estimate the minimum disk masses required to form
super-Earths in situ. A planet that excites the random
velocities of surrounding bodies to the maximum value
of vesc has a feeding zone of full width

� =
2vesc
nRH

' 45
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P

yr
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g cm�3
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, (3)

where n is the planet’s orbital angular frequency
(a.k.a. mean motion), P = 2⇡/n is the orbital period,
and ⇢ is the planet’s bulk density. This feeding zone
width also corresponds to the expected maximum spac-
ing between nascent planets. We will take a related ap-
proach by finding the spacing that allows for an “ec-
centricity equilibrium”: one that balances gravitational
scatterings between protoplanets, which excite eccentric-
ities, with mergers, which damp them.
Our paper, which explores how the orbital spacings of

super-Earths are fossil records of their formation in situ,
and how orbital properties in general are correlated with
planet composition, is organized as follows. In Section 2,
we describe the setup for the N -body simulations that
are the basis for all subsequent sections. In Section 3, we
show how spacings, eccentricities, and inclinations evolve
with time for a few illustrative, gas-free simulations. In
particular, we demonstrate how the evolution is sensi-
tive to initial inclinations — an input parameter that, to
our knowledge, is not often highlighted as a controlling

parameter in coagulation calculations. We o↵er order-of-
magnitude scalings to understand these results, explain-
ing the dependence of spacings on inclinations in terms
of an eccentricity equilibrium that balances scatterings
with mergers. Section 4 gives a more complete overview
of our gas-free simulations, detailing how final spacings
depend on various initial conditions. Section 5 brings
dynamical friction by disk gas into the mix; we investi-
gate how gas can establish those initial conditions that
were assumed in preceding sections. Including gas also
enables us to connect planet compositions — whether or
not planets have volumetrically significant gas envelopes
— with orbital properties; this is the focus of Section 6.
Comparisons with observations are made in Section 7;
there we will find that we need a mixture of dynamically
hot and dynamically cold populations to more faithfully
reproduce Kepler data. We present our conclusions in
Section 8.

2. INITIAL CONDITIONS FOR N -BODY SIMULATIONS

To assess how orbital spacings depend on conditions
during the late stages of planet formation, we simulate
the growth of isolation mass embryos to super-Earths
via collisions (a.k.a. giant impacts). Building on work
by, e.g., Chambers et al. (1996), Kokubo & Ida (1998,
2002), Hansen & Murray (2012, 2013), and Dawson et al.
(2015), we perform N -body integrations each lasting 27
Myr using the hybrid symplectic integrator of mercury6
(Chambers 1999). The time step is 0.5 days and a close
encounter distance (which triggers a switch from the
symplectic integrator to the Burlisch-Stoer integrator) is
1 RH. We run several thousands of simulations, grouped
into ensembles and summarized in Table 1. The default
number of simulations per ensemble is 80.
Our simulations begin with embryos each having an

isolation mass Memb:

Memb = 0.16M�

✓
�0

10

◆3/2✓ ⌃
z,1

10 g/cm2

◆3/2

⇥
⇣

a

AU

⌘3(2+↵)/2
✓
M

?

M�

◆�1/2

(4)

where ⌃
z

= ⌃
z,1(a/AU)↵. We explore a large range of

⌃
z,1 = 3–400 g/cm2. By default, we use an initial spac-

ing �0 = 10, similar to Hansen & Murray (2012, 2013),
and based on the Kokubo & Ida (1998, 2002) simulations
of embryos formed via the accretion of small bodies. We
list the range of the initial number of embryos per simu-
lation, Nemb,0, and the final number of planets, Np,final,
in Table 1. Some of our simulations include damping by
residual disk gas; these are detailed in Section 5. We
assign planets constant bulk densities ⇢ that define their
physical cross sections. When two embryos touch, we
assume perfect accretion with no fragmentation.
Initial eccentricities and inclinations are specified in

Table 1. Depending on the ensemble, the magni-
tude of the initial eccentricity e0 is set either to
0; to a constant fraction (specified in the Table) of
h ⌘ [(Memb,1 +Memb,2)/(3M?

)]1/3, where the subscripts
“1” and “2” refer to adjacent inner and outer bod-
ies; or to a constant fraction of the orbital separa-
tion �a/a ⌘ (a2 � a1)/[2(a2 + a1)]. Flat ensembles (Ef,
Eci0) are strictly 2D, beginning with and maintaining
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i = 0. For other ensembles, the magnitude of the initial
inclination i0 is drawn either from a uniform distribu-
tion between 0–0.1� or 0–0.001�; set to a constant value
e0/

p
2 (equipartition); or set to 0.01h. The initial mean

anomaly, argument of periapse, and longitude of ascend-
ing node are drawn randomly from a uniform distribution
spanning 0–2⇡. In the remainder of this work, we com-
pute the reported i of each planet relative to the initial
i = 0 plane.
Following Hansen & Murray (2012, 2013), the inner

edge of the disk of embryos is drawn randomly from a uni-
form distribution spanning 0.04–0.06 AU. Other embryos
are spaced �0 away from each other, up to a maximum a

of 1 AU. Embryos are initially placed in order of increas-
ing a. The semi-major axis a

j

and mass Memb,j of the
jth embryo are computed from the mutual Hill radius of

the previous embryo, i.e., RH = a

j�1

⇣
2Memb,j�1

3M?

⌘1/3
. As

a result, the actual initial orbital spacings di↵er slightly
from the values of �0 listed in Table 1. The surface
density normalization ⌃

z,1 for each simulation in the en-
semble is drawn from a uniform log distribution span-
ning the range specified in Table 1. The surface density
slope ↵ = �3/2 except for ensemble Eh↵-2, which uses
↵ = �2, as noted in Table 1.

3. GROWTH AND EQUILIBRATION OF ECCENTRICITIES
AND SPACINGS

During the giant impact stage of planet formation,
planets scatter and merge, establishing the system’s or-
bital spacings and eccentricities. Through mutual grav-
itational interactions, planets convert Keplerian shear
into random velocity, leading to growth in e and i. Merg-
ers (inelastic collisions) counter the growth of random ve-
locities and stabilize the system by widening the spacings
between bodies. Figure 1 (row 1) compares the average
eccentricity growth from two ensembles of simulations
(E, Ef), two individual members of which are shown
in Figure 2. Planets begin as moon-to-Mars mass em-
bryos on circular orbits and grow in mass, separation,
and eccentricity. Fig. 1 shows four stages for eccentricity
growth: the initial growth at low e (stage 1), a faster
growth as e approaches orbit crossing (stage 2), growth
during orbit crossing (stage 3), and an eccentricity equi-
librium (stage 4). For the non-flat ensemble, the average
inclination is also plotted in Figure 1. The second row of
Figure 1 shows the evolution of �, the spacing in mutual
Hill radii, which is flat throughout the first two eccen-
tricity growth stages when mergers do not yet occur.
In this section we use order-of-magnitude calculations

to understand how eccentricities, inclinations, and or-
bital spacings are connected. We focus exclusively on
the latter phases of the evolution — stages 3 and 4 —
when mergers occur and spacings � evolve from their
initial values.

3.1. Eccentricity growth rate

We derive an order-of-magnitude formula for eccentric-
ity growth for use in later subsections when we consider
the specifics of stages 3 and 4. Consider widely-spaced,
shear-dominated pairs for which the relative velocities
are

vrel ⇠ vH�, (5)
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Fig. 1.— Inclinations matter for orbital spacings. Top: Evolu-
tion of e (thick curves) and i (thin curve), averaged over all planets
in an ensemble. Averages from the non-flat ensemble E are plotted
as red dashed curves and from flat ensemble Ef as a black solid
curve; i does not appear on the plot for Ef because that ensem-
ble is completely 2D (i = 0). For both ensembles, the eccentricity
undergoes four stages of evolution, as demarcated by vertical dot-
ted lines. Middle: Same for Hill spacings � for adjacent pairs of
planets. Planet pairs in the flat ensemble (black solid) end up with
tighter spacings. Bottom: Distributions of final �.

where vH is the mutual Hill velocity. The relative veloc-
ity changes impulsively every conjunction. An encounter
between two planets each of mass Mp at impact param-
eter x produces an acceleration

GMp

x

2
=

3n2
R

3
H

2x2

over a time interval 2x/vrel, changing vrel by

�vrel =
3n2

R

3
H

xvrel
. (6)

It is assumed that �vrel is randomly directed; over many
encounters, vrel random walks. For a given x, the ex-
pected number of synodic periods Nsynodic (i.e., the num-
ber of conjunctions or random walk steps) required to
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TABLE 1

Ensembles of Simulations

Name e0 i0 �0 ⌃
z,1 Nemb,0 Np,final Notes

(rad) (RH) (g cm�2)
Ef 0 0 10 33–90 22–35 7–13
E 0 0.1� 10 33–90 22–35 4–11 a
Eh

p
2h/

p
3 e0/

p
2 10 3–403 12–128 2–22 b,c

Eh↵-2

p
2h/

p
3 e0/

p
2 10 33–55 19–25 6–8 c,d

Eh⇢

p
2h/

p
3 e0/

p
2 10 116 20–23 4–7 c,e

Ec �a/(2a) e0/
p
2 10 33–90 22–35 4–10 f

Eci0 �a/(2a) 0 10 33–90 22–35 5-11 f
Eci0.1 �a/(2a) 0.1� 10 33–90 22–35 4–8 a,f
Eci0.001 �a/(2a) 0.001� 10 33–90 22–35 4-12 a,f
Ece0.3 0.3�a/a e0/

p
2 10 33–90 22–35 4–9 f

Ece0.1 0.1�a/a e0/
p
2 10 33–90 22–35 4–9 f

Ece0.3i0.1 0.3�a/a 0.1� 10 33–90 22–35 5–8 a,f
Ece0.1i0.1 0.1�a/a 0.1� 10 33–90 22–35 5–10 a,f
E�3 0 0.1� 3 33–90 129–240 5–9 a
E�5 0 0.1� 5 33–90 62–111 5–8 a
E�7.5 0 0.1� 7.5 33–90 34–54 4–8 a
E�9 0 0.1� 9 33–90 27–43 3–8 a
E�11.5 0 0.1� 11.5 33–90 19–33 4–12 a
E�13 0 0.1� 3 33–90 17–28 3–14 a
Ed10

0
h h/100 3 38–105 123–220 2–9 c,g

Ed10

1
h h/100 3 38–105 123–220 3–9 c,g

Ed10

2
h h/100 3 38–105 123–220 3–18 c,g

Ed10

3
h h/100 3 38–105 123–220 2–9 c,g

Ed10

4
h h/100 3 38–105 123–220 2–9 c,g

a Inclinations drawn randomly from a uniform distribution between 0 and i0.
b Contains 500 simulations. The default is 80.
c
h ⌘ [(Mp,1 +Mp,2)/(3M⇤)]1/3 is the Hill parameter.

d Surface density power-law slope is ↵ = �2 instead of the default ↵ = �3/2.
e The planet bulk density ⇢ is drawn from a uniform log distribution from 0.02–14
g cm�3. The default is a fixed ⇢ = 1 g cm�3.

f
�a ⌘ a2 � a1 is the semi-major axis di↵erence between neighboring embryos.

g Includes gas damping. See Section 5.

Fig. 2.— Evolution of a (black) and a(1±e) (gray). Left: ⌃
z,1 = 55 g/cm2 simulation from Eh. The final planets have 1.5 < M

p

< 5M�.
Right: Identical simulation with initial i = 0. The planets end up more tightly spaced (in both a and �).
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change vrel by a fractional amount f is given by

1

Nsynodic
=

✓
�vrel

fvrel

◆2

=
9R2

H

f

2
x

2�4
. (7)

Eqn. 7 gives a rate of viscous stirring, which we now
average over the geometry of possible impact parameters
x from xmin to xmax. The probability of an encounter
with impact parameter x depends on the value of x rel-
ative to the “scale height” ia, as depicted in Figure 3.
The scale height for a pair of bodies reflects the range of
mutual inclinations resulting from their inclinations ⇠ i

with respect to the initial plane and their range of nodal
orientations. Let D be the range of horizontal separa-
tions, determined by � and the eccentricity vectors. For
x > ia, the dynamics is essentially 2D (i.e., in a com-
mon orbital plane) and independent of the inclinations.
If orbits are crossing (Figure 3, right panel), the prob-
ability of a conjunction occurring within the interval x
and x+ dx for x > ia is

p(x)dx =
4x sin�1 (ia/x) dx

2iaD
⇠ 2dx

D

, x > ia, crossing.

For non-crossing orbits (Figure 3, left panel), this 2D
probability is reduced by a factor of 2. For x < ia (the
3D case), the corresponding probability is

p(x)dx =
2⇡x dx

2iaD
⇠ ⇡x dx

iaD

, x < ia,

reduced by a factor of ⇡x/(2ia) relative to the 2D case
and dependent on i.
Weighting Eqn. 7 by these probabilities and integrating

from xmin to xmax, we find
*

1

Nsynodic

+

stir

=
9R2

H

f

2
D�4

⇥
 Z max[rgraze,xmin,min(ia,xmax)]

max(rgraze,xmin)

⇡dx

iax

+

Z
xmax

max[rgraze,xmin,min(ia,xmax)]

2dx

x

2

!

=
18R2

H

f

2
D�4

⇥
 

⇡

2ia
ln


max [rgraze, xmin,min(ia, xmax)]

max(rgraze, xmin)

�

+
1

max [rgraze, xmin,min(ia, xmax)]
� 1

xmax

!
,

(8)

where the impact parameter for two bodies of radius Rp

to undergo a grazing collision is

rgraze=2Rp

⇥
1 + (vesc/vrel)

2
⇤1/2

=
12RH

�

✓
vH

2vesc

◆"
1 + 4

✓
�

2vesc/vH

◆2
#1/2

.

(9)

The max(rgraze, xmin) lower limit of the first inte-
gral applies because when x < rgraze at conjunc-
tion, a merger occurs instead of a scattering. The
max[rgraze, xmin,min(ia, xmax)] upper limit of the first in-
tegral ensures that only the encounters with x < ia are
taken into account. For xmin > ia, the first integral van-
ishes. Conversely, the second integral, which takes into
account encounters with x > ia, vanishes if xmax < ia.
Eqn. 8 applies to the growth of random velocity — i.e.,

both e and i — but in the remainder of this section we
will apply it to eccentricity growth. Most encounter ge-
ometries either predominantly excite e (x > ia) or excite
both e and i by comparable amounts (x < ia).

3.2. Stage 3: Eccentricity growth post-orbit crossing

In stage 3, orbits cross and bodies merge (Fig. 1: � is
increasing in row 2 during this stage). Eccentricity exci-
tation by scatterings is tempered by eccentricity damping
by mergers. Eccentricity damping follows from conser-
vation of momentum: an inelastic head-on collision be-
tween two equal-mass bodies with relative velocity vrel

produces a single body with velocity vrel/2. For e / vrel,
this argument yields �emerger ⇡ �0.5e. Empirically, we
determine from our simulations (Sections 2 and 4) that
�emerger ⇡ �0.4e is a more accurate rule of thumb. (See
Matsumoto et al. (2015) for a detailed study of eccentric-
ity damping via giant impacts.) The takeaway point is
that each merger lowers the eccentricity of the colliding
pair by a factor of order unity. Thus the number of con-
junctions (i.e., synodic periods) required to reduce the
median eccentricity by order unity is the inverse of the
probability of a merger per conjunction, i.e., the inverse
of the probability that x  rgraze in a given encounter:

*
1

Nsynodic

+

damp

⇠
⇡r

2
graze

Dia

, ia > rgraze

⇠ 2rgraze
D

, ia < rgraze.

(10)

The two cases correspond to 3D and 2D encounters, re-
spectively.
We compare the above damping rate to the stirring

rate (Eqn. 8), evaluated for xmin < rgraze and xmax >

ia:

*
1

Nsynodic

+

stir,3

⇠ 72R2
H

D�4
⇥

(
⇡

2ia
ln


max (ia, rgraze)

rgraze

�
+

1

max (ia, rgraze)
� 1

xmax

)
,

(11)

where we have set f = 0.5 because we are interested in
order-unity changes to the eccentricity.
As xmax ! 1, the ratio of the stirring rate to the
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D

x

to star

2ia

Non-crossing

D

x1
x2

to star

2ia

Crossing

Fig. 3.— The probability of an encounter with impact parameter x between two bodies depends on the value of x relative to the scale
height ia. The rectangle represents the area of possible encounter space for the pair of bodies. Left: Non-crossing orbits. The probability

of an encounter within dx of x is 2x sin�1[ia/x]dx
iaD

⇠ dx

D

. Right: Crossing orbits. For x1 < ia, the probability of an encounter within dx

of x1 is 2⇡x1dx

2iaD
⇠ x1dx

iaD

, where D is the range of horizontal separations. For x2 > ia, the probability of an encounter within dx of x2 is
4x2 sin�1[ia/(2x2)]dx

2iaD
⇠ 2dx

D

. Hence the encounter probability depends on i for x < ia but not for x > ia.

damping rate is

D
1

Nsynodic

E

stirD
1

Nsynodic

E

damp

⇠ 72R2
H

⇡�4
r

2
graze

h
⇡

2 ln
⇣

ia

rgraze

⌘
+ 1
i
, ia > rgraze

⇠ 36R2
H

�4
r

2
graze

, ia < rgraze.

(12)

Note how D conveniently divides out. In stage 3, the
ratio given by Eqn. 12 is greater than unity: stirring
exceeds damping for small �, and eccentricities and in-
clinations rise. At a given �, the stirring-to-damping
ratio is larger — by a logarithm — for ia > rgraze than
for ia < rgraze. This is consistent with Fig. 1 (row 1),
which shows that eccentricity growth is somewhat faster
in non-flat systems as compared to flat systems during
stage 3.

3.3. Stage 4: Eccentricity equilibrium

An eccentricity equilibrium can be achieved when the
rate of eccentricity growth from scatterings matches the
rate of eccentricity damping from mergers. This eccen-
tricity equilibrium is evident in stage 4 of Fig. 1 (row 1).
It is distinct from the spacing equilibrium discussed by
Kokubo & Ida (1995, 1998), whereby orbital repulsion
between big bodies (driven by scattering and dynamical
friction) keeps pace with the expansion of their Hill radii
caused by accretion of small bodies.
Setting the stirring-to-damping ratio3 in Eqn. 12 to

unity gives the value of � necessary to achieve an eccen-

3 This ratio was derived under the assumption that xmax > ia.
We do not treat the case xmax < ia.

tricity equilibrium:

✓
�

2vesc/vH

◆"
1 + 4

✓
�

2vesc/vH

◆2
#1/2

=

1

2

s

ln

✓
ia

rgraze

◆
+

2

⇡

, ia > rgraze

1

2
, ia < rgraze

(13)

or

�

2vesc/vH
= 0.5

vuut
s

ln

✓
ia

rgraze

◆
+ 0.89� 0.5, ia > rgraze

�

2vesc/vH
= 0.39, ia < rgraze .

(14)

Eqn. 14 can be re-cast as:

� = 22
⇣

P

yr

⌘1/3 ⇣
⇢

g/cm3

⌘1/6

⇥

sr
ln
⇣

ia

rgraze

⌘
+ 0.89� 0.5, ia > rgraze,

� = 17
⇣

P

yr

⌘1/3 ⇣
⇢

g/cm3

⌘1/6
, ia < rgraze . (15)

At the risk of over-interpreting our order-of-magnitude
calculations, we infer from Eqns. 14 and 15 that: (a) the
spacing that gives an eccentricity equilibrium (hereafter
the “equilibrium spacing”) does not depend explicitly on
planet mass, embryo surface density, or (for a given or-
bital period) stellar mass; (b) the equilibrium spacing
does depend on planet bulk density because lower ⇢ cor-
responds, at fixed mass, to larger Rp and therefore larger
rgraze (Eqn. 9); larger merger rates must be balanced by
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larger stirring rates which are obtained for smaller �
(compare Eqns. 10 and 11); (c) for practically all values
of i, the equilibrium spacing is less than the standard
quoted value of 2vesc/vH (Section 1), in agreement with
our numerical simulations (Section 4) and observations
(e.g., Fang & Margot 2012a; Pu & Wu 2015).
Of especial note is (d) higher i’s lead to wider spac-

ings. While stirring and merger rates are each reduced
by increasing i — because the volume of space in which
bodies interact / ia — the stirring rate is reduced less
severely, because encounters occurring at the largest im-
pact parameters, at x > ia, unfold independently of i.
For example, for ia = 10rgraze, Eqn. 15 yields a spacing
about 50% wider than in a flat (ia < rgraze) system.
Our considerations of orbital spacings are qualitatively

similar to those of Pu & Wu (2015). Both of our studies
recognize that increasing mutual inclinations in packed
multi-planet systems demands larger orbital spacings to
maintain dynamical stability (cf. our Eqn. 15 with their
equation 14). Since their study is numerical, it accounts
for e↵ects not captured by the crude arguments we have
made in this Section 3. In particular, our treatment
above assumes that each conjunction between neighbor-
ing planets is a step in a random walk; this assump-
tion may fail at large orbital spacings where the dynam-
ics is less chaotic. Hopefully this shortcoming does not
compromise our goal to understand, if only qualitatively,
how orbital spacings are determined during the formative
stages of planetary systems, when spacings are compara-
tively small. We o↵er Eqn. 15 as a plausibility argument
that can explain some of the results of our numerical
simulations. These simulations are the focus for the re-
mainder of our paper.

4. DEPENDENCE OF SPACINGS ON INITIAL
(POST-DAMPING) CONDITIONS

Here we use simulations to explore how orbital
spacings depend on initial conditions in the purely
N -body regime, i.e., after damping from residual
gas/planetesimals has ceased. In this section, we assign
a range of ad hoc initial conditions. In Section 5, we
will explore how gas damping might establish such ini-
tial conditions.

4.1. Systems flatter during orbit crossing end up with
tighter spacings

In Section 3.5, we demonstrated with scaling argu-
ments that the spacing necessary to achieve an eccentric-
ity equilibrium via stirring and mergers depends on the
planets’ inclinations. We found that the final spacings
of flat systems (i = 0) are tighter than those of systems
where i is free to grow (Fig. 1). Here we compare several
additional ensembles that all have i free to grow but have
di↵erent i’s during the orbit crossing stage, when i starts
to a↵ect the stirring rate (i.e., eccentricity growth stage
3, Section 3.4).
Each ensemble of simulations begins with planets with

eccentricities large enough to cross:

e0 = 0.5 �a/a,

where �a is the di↵erence in semi-major axes between
adjacent bodies. The four ensembles di↵er in the mag-
nitudes of their initial inclinations: i0 = 0 (Eci0, black
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Fig. 4.— Inclinations when orbits start to cross a↵ect final spac-
ings. Each of the ensembles (red, blue, purple, black) begins with
an identical distribution of initial conditions excepting inclinations.
Top: Evolution of e (solid) and i (dotted), averaged over all planets
in an ensemble. The eccentricity evolution is similar across ensem-
bles except the i = 0 ensemble (black). Bottom: The smaller the
initial i, the tighter the final spacing. Each simulation begins with
�0 = 10 at t = 0.

curve in Fig. 4); i0 = 0.001� (Eci0.001, purple), i0 =
0.1� (Eci0.1, blue), and i0 = e0/

p
2 (Ec, red).

We plot the evolution of e, i, and� in Fig. 4. In all four
ensembles, the slope of e vs. time (top panel) is relatively
shallow because stirring and merging tend to counter-
balance each other. It is evident from the bottom panel
that mergers begin immediately. Excepting the i = 0
case, the inclination grows and reaches equipartition with
eccentricity within a fraction of a Myr. As a result of this
fast growth, the non-flat ensembles exhibit only modest
di↵erences in their final i’s and �’s. As expected from
Section 3.5, the flatter the system, the tighter the final
spacing. The median final spacings are 20, 26, 27, and
29 from ensembles Eci0, Eci0.001, Eci0.1, and Ec,
respectively.

4.2. Larger initial eccentricity, wider final spacing

Next we explore the e↵ects of the initial eccentricity
on the final spacing. Although e does not enter directly
into the spacing equilibrium derived in Section 3.5, it
can have several indirect e↵ects that we discuss below.
For ensembles Ec, Ece0.3, Ece0.1, and E, respectively,
e0 = 0.5 �a/a, 0.3 �a/a, 0.1 �a/a, and 0; these range from
initially crossing orbits (Ec) to initially circular orbits
(E). For case E, the initial inclination magnitude is drawn
from a uniform distribution from 0–0.1�, while for the
other cases i0 = e0/

p
2 rad. All have the same initial

spacings �0.
We plot the evolution of �, e, and i in Fig. 5, left
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Fig. 5.— Initial eccentricities a↵ect final spacings. Each of the ensembles (red, blue, purple, black) begins with identical spacings but
di↵erent initial eccentricities. Top: Evolution of e (solid) and i (dotted), averaged over all planets in an ensemble. The ensembles end up
with similar final eccentricities but di↵erent inclinations. Bottom: Evolution of spacing �. Left: Initial i0 = e0/

p
2 rad. The larger the

initial eccentricity, the wider the final spacing. Right: Initial i0 magnitude drawn uniformly from 0–0.1�. The final spacing di↵ers only for
the largest initial eccentricity (red).

panel. The black curve (e0 = 0, E) represents the same
ensemble plotted as the red-dashed curve in Fig. 1. The
purple curve (e0 = 0.1 �a/a, Ece0.1) begins with the ec-
centricity growth stalled, even though mergers are not
yet occurring (bottom left panel). It appears in individ-
ual simulations that the initial stalling occurs because we
assigned random phases to the eccentricity vectors; orbits
need to precess so that their apsidal longitude di↵erences
�$ = ⇡ before encounters become close and stirring be-
gins in earnest. The blue (e0 = 0.3 �a/a, Ece0.3) and
red (e0 = 0.5 �a/a, Ec) curves begin with nearly cross-
ing or crossing orbits; as seen for the crossing orbits in
Fig. 4, the counteracting contributions of mergers and
stirring keep the eccentricity evolution slow.
Initial eccentricities a↵ect final spacings: the me-

dian final spacings for the four ensembles (Ec, Ece0.3,
Ece0.1, E) are 29, 27, 26, and 25, respectively. Al-
though the eccentricity does not explicitly factor into the
spacing equilibrium in Section 3.5, we hypothesize that
it has the following indirect e↵ects.
The first is that our initial conditions assumed equipar-

tition between e and i (i0 = e0/
p
2). The larger initial e0

leads to a larger initial i0 which propagates to a larger
i during orbit crossing, increasing the spacing required
for an eccentricity equilibrium (Sections 3.5, 4.1). The
ensembles that end up with wider spacings (Ec, Ece0.3,
red and blue, Fig. 5, bottom left panel) also have larger
inclinations (top left panel). To test this idea further, we
ran three additional ensembles of simulations (Eci0.1,
Ece0.3i0.1, Ece0.3i0.1) that we plot along with en-
semble E in the right panels of Fig. 5. For these aux-

iliary runs, instead of beginning with i0 = e0/
p
2, we

assign inclination magnitudes drawn from a uniform dis-
tribution from 0–0.1�. Whereas the original ensembles
Ec, Ece0.3, Ece0.1, and E (each with di↵erent i0)
converged to di↵erent final eccentricities, inclinations,
and spacings (Fig. 5, left panel), the extra ensembles
Eci0.1, Ece0.3i0.1, Ece0.1i0.1, and E converge to
nearly identical final eccentricities and inclinations (right
panel). The final spacing of ensemble Ece0.3i0.1 (26)
di↵ers only slightly from those of Ece0.1i0.1 and E (25),
despite their di↵erent initial eccentricities.
However, the ensemble with the largest initial eccen-

tricities (Eci0.1) ends up with larger final eccentricities,
inclinations, and spacings. Therefore initial inclinations
and equipartition are not the whole story. Two other ef-
fects may be contributing to large final spacings for the
ensembles that began with large eccentricities (Eci0.1,
Ec, e0 = 0.5 �a/a, red curves). First, systems that
start with eccentricities close to crossing may be prone
to mergers that overshoot the spacing value correspond-
ing to eccentricity equilibrium. Overshooting the bench-
mark spacing value is possible because collisions are non-
reversible. Second, we assumed in Section 3 that relative
velocities are shear-dominated. But when e0 = 0.5 �a/a,
epicyclic motions contribute significantly to relative ve-
locities. Increasing the relative velocity reduces rgraze,
which reduces the merger rate and necessitates a wider
spacing to achieve an eccentricity equilibrium.

4.3. Smaller initial spacing, wider final spacing

Last we explore the dependence of the final spac-
ing on the initial Hill spacing �0. We compare
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Initial spacings di↵er slightly from those listed in the legend be-
cause of the way we lay down our embryos; see the last paragraph
of Section 2.

seven ensembles of simulations: {E�3, E�5, E�7.5,
E�9, E, E�11.5, E�13}, which have initial �0 =
{3, 5, 7.5, 9, 10, 11.5, 13}, respectively. All have e0 = 0
and i0 drawn from a uniform distribution from 0–0.1�.
We plot the evolution of e, i, and � in Fig. 6. The final
median spacings of the ensembles are 31, 31, 29, 27, 25,
23, and 17, respectively. The systems that are initially
spaced more tightly end up with wider spacings.
Our interpretation is that the initially tighter spac-

ings allow eccentricities to enter the orbit crossing regime
sooner (i.e., at a tighter spacing), further exciting eccen-
tricities and inclinations (see Fig. 1). During the sub-
sequent evolution, at a given �, systems with initially
smaller �0 have larger i and e than their counterparts
that began with larger �0. As explored in Sections 4.1
and 4.2, larger e and i drive systems toward wider final
spacings.
The equilibrium values of e and i achieved also seem

to remember the initial spacing (Fig. 6, row 1). The final
equilibrium e and i stratify according to initial spacing:
tighter initial spacings (light blue) result in higher final
equilibrium e.
The assumed initial spacings of the N -body simula-

tions presented here are intended to reflect possible end-
states of oligarchic merging in the presence of residual
gas and planetesimals. In the next section, we compute
such endstates from scratch using damped N -body sim-
ulations.

5. RESIDUAL GAS DAMPING CAN ESTABLISH INITIAL
CONDITIONS THAT DETERMINE FINAL SPACINGS

Before disk gas dissipates, it can damp planet eccen-
tricities and inclinations. The competition between gas
damping and mutual viscous stirring by protoplanets sets
primordial orbital spacings, eccentricities, and inclina-
tions, which in turn determine the subsequent gas-free
evolution. We present here the results of N -body simu-
lations that include the e↵ects of gas damping.

5.1. Damping prescriptions

The strength and persistence of gas damping depends
on how the protoplanetary nebula clears. Observations
of young stellar clusters show that transition disks —
disks with central clearings — comprise ⇠10% of the
total disk population (Espaillat et al. 2014; Alexander
et al. 2014). We adopt the interpretation that all disks
undergo a transitional phase that lasts . 10% of the total
⇠5–20 Myr disk lifetime (Koepferl et al. 2013; see also
Clarke et al. 2001, Drake et al. 2009, and Owen et al.
2011, 2012 for their “photoevaporation-starved” model
of disk evolution which reproduces the short final clear-
ing timescale).
For simplicity we model the gas disk as having a fixed

density that persists for 1 Myr and drops to zero there-
after. The step function could represent the final Myr of
the slow phase (prior to the formation of a central clear-
ing) followed by the fast transitional phase in which gas is
assumed to vanish completely inside 1 AU. Alternatively
the step function could represent the act of clearing that
takes place entirely during the fast transitional phase.
We implement gas damping in a customized version

of mercury6 that incorporates user-defined forces as de-
scribed in Appendix A of Wol↵ et al. (2012), adding
several corrections and modifications that allow us to
use the hybrid symplectic integrator, which we bench-
marked against the Burlisch-Stoer integrator. We im-
pose ė/e = �1/⌧ and i̇/i = �2/⌧ (Kominami & Ida
2002). Following Dawson et al. (2015), we make use of
three damping timescales ⌧ , based on the regimes identi-
fied in Papaloizou & Larwood (2000), Kominami & Ida
(2002), Ford & Chiang (2007), and Rein (2012):

⌧ = 0.003 d
⇣

a

AU

⌘2 ⇣
M�
Mp

⌘
yr ⇥

1, v < cs

(v/cs)
3
, v > cs, i < cs/vK

(v/cs)
4
, i > cs/vK

(16)

where M� is one solar mass, Mp is the planet mass,
v =

p
e

2 + i

2
vK is the random (epicyclic) velocity,

vK = na with n equal to the planet’s mean motion,
cs = 1.29 km/s (a/AU)�1/4 is the gas sound speed, and
d is a constant proportional to the degree of nebular
gas depletion (d = 1 corresponds approximately to the
minimum-mass solar nebula with gas surface density
⌃1 = 1700 g/cm2 at 1 AU, and d > 1 corresponds to
more depleted nebulae).
Our simulations bear some resemblance to those of

Kominami & Ida (2002), who also include gas damping of
planetary random velocities. Our study di↵ers in having
a damping timescale that varies with epicyclic velocity
(Eqn. 16); solid surface densities ⌃

z,1 that are up to an
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order of magnitude larger than theirs (so as to reproduce
Kepler super-Earths); a gas disk evolution that behaves
as a step function instead of their decaying exponential;
and hundreds more simulations that enable us to make
statements with greater statistical confidence. Our aim is
also broader in that we seek to understand how spacings,
inclinations, and eccentricities inter-relate; and later in
Section 6 we will bring planetary composition into this
mix as we distinguish between purely rocky and gas-
enveloped planets. Where we overlap with Kominami
& Ida (2002), we agree; in disks of low ⌃

z,1, producing
predominantly rocky < 2M� planets, the final spacings
� tend to be large, exceeding ⇠20 (compare our Figure
8 with the results described in the text of their section
4).

5.2. Conditions at the end of gas damping and
subsequent evolution

Ensembles Ed100, Ed101, Ed102, Ed103, and Ed104

correspond to d = 1, 10, 102, 103, and 104, respectively.
The simulations all have initial �0 = 3, e0 = h,
i0 = 0.01h, and ⇢ = 1 g/cm3. The initial eccentrici-
ties are close to orbit crossing. The small initial incli-
nations are assumed to have been damped by the unde-
pleted nebula prior to the start of the simulations. Our
choice of i0 = 0.01h gives inclinations similar to those for
i0 = 0.001�; the system is assumed to be initially nearly
flat. Each ensemble comprises 80 simulations with solid
surface densities ⌃

z,1 spanning 38–105 g/cm2. Further
details are listed in Table 1. After 1 Myr, we shut o↵ gas
damping, and integrate for an additional 27 Myr.
The physical interpretation of the scenario simulated

here is as follows. Before the simulation begins, a high
gas surface density has kept the embryos separated by
�0 = 3. Then the gas density drops to the simulated
depletion d, allowing the embryos to scatter and merge
in the presence of gas damping for 1 Myr. Then the
gas vanishes entirely and the system evolves for 27 Myr
without gas.
The left panels of Fig. 7 show the evolution of i, e, and

� in the presence of damping. Gas damping flattens and
circularizes systems to low i and e on timescales that in-
crease with d (top left). After 1 Myr of evolution with gas
damping, the smallest d (strongest damping, dark blue)
ensembles have the tightest spacings, smallest inclina-
tions, and smallest eccentricities (the d = 1 ensemble is
a bit of an outlier in eccentricity). The subsequent un-
damped, gas-free evolution is shown in the right panels.
In the more strongly damped Ed100, Ed101, and Ed102

ensembles, the eccentricity and inclination (Fig. 7, top
left) initially grow. The initial eccentricities are close
to orbit crossing (e0/h = 1 = �0/3) and so embryos
begin to merge almost immediately (bottom left). As
the spacing increases, eccentricity and inclination growth
rates decrease and eventually e and i are damped. In-
clinations are damped sooner and more steeply. Ec-
centricities are damped later and appear to plateau to
fixed points. When damping ends, the ensembles with
the shortest damping timescales have the tightest spac-
ings, but eventually their fortunes will reverse. As docu-
mented in Section 4.3, the tightest initial spacings yield
the widest final spacings in the gas-free stage. Among the
Ed100, Ed101, and Ed102 ensembles, all of which emerge
from the damping stage with similarly small eccentrici-

ties, the Ed100 ensemble ends up most widely spaced in
the subsequent gas-free evolution, while Ed102 ends up
most tightly spaced. We highlight the Ed102 ensemble
as producing typical final spacings of � ⇠ 20 (Fig. 7,
bottom right panel) in agreement with the observations
(e.g., Fang & Margot 2013). We will compare to the
observations in greater detail in Section 7.
The less-damped ensembles Ed103 and Ed104 reach the

widest spacings. At the end of gas damping, they be-
gin (right panels) on initially nearly crossing orbits, like
those explored in Section 4.2. In their subsequent evolu-
tion, they reach a spacing of � ⇡ 30.
We also see the e↵ects of the inclinations during orbit

crossing, as described in Section 4.1. During the gas-free
evolution, the Ed101 ensemble ends up with an average
final eccentricity similar to those of the Ed103 and Ed104

ensembles, but the inclinations of Ed101 when orbits be-
gin to cross (t ⇠ 1 Myr in the right panel) are low. The
lower inclinations likely contribute to the narrower final
spacing of Ed101 compared to Ed103 and Ed104.
We continued integrations of three ensembles (Ed101,

Ed102, Ed103) up to a total time of 300 Myr (corre-
sponding to four months of wall-clock time) and found
that their outcomes hardly changed from those shown in
Fig. 7. The eccentricities e/h of these three ensembles
remained approximately constant, while their median �
values grew by about 10%. We estimate that the me-
dian � may grow by another ⇠10–15% if the integrations
were extended to 10 Gyr. The Ed102 ensemble retained
its much tighter spacings and smaller eccentricities and
inclinations as compared to the other two ensembles. Al-
though the ensembles retained their qualitative character
when integrated for longer, the quantitative changes, in
particular to the spacings, can be significant when at-
tempting to fit to the observations (cf. Pu & Wu 2015).
Longer integrations of all ensembles could be run in a
follow-up study.

6. SPACING AND PLANETARY BULK DENSITY

Here we demonstrate several ways in which the gi-
ant impact stage explored in Sections 3–6 connects plan-
ets’ bulk densities to their orbital properties. More rar-
efied planets are characterized by tighter orbital spac-
ings, lower eccentricities, and lower mutual inclinations.
Our results motivate a search for observational correla-
tions between super-Earths’ orbital and compositional
properties, which statistical studies usually assume to be
independent of each other (e.g., Fang & Margot 2012b).

6.1. High solid surface density ! Rarefied and tightly
spaced planets

Planets with lower bulk densities and planets with
tighter spacings are each a consequence of higher solid
surface density disks. In a higher solid surface density
disk, a core of a given mass can form from mergers of
embryos contained in a narrower zone of smaller �. Fig-
ure 8 demonstrates the anti-correlation between the fi-
nal spacing of super-Earths and the solid surface density
normalization. Furthermore, when cores grow from nar-
rower feeding zones, they undergo mergers quickly (see
also the empirical study of orbit crossing timescales as a
function of � by Yoshinaga et al. 1999), reaching a mass
large enough to acquire gas envelopes before the gas disk
dissipates.
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Fig. 7.— Evolution of e/h and i/h (top) and � (bottom) for ensembles of simulations with gas damping (left, parametrized by gas disk
depletion factor d; see text), and evolution after gas damping (right).
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The spacing � tends to decrease with ⌃

z,1, particularly for a re-
stricted range of masses (e.g., the red points). The trend is not
sensitive to the initial conditions of the ensemble. Our result that
� & 20 for low ⌃

z,1 agrees with Kominami & Ida (2002).

Following Dawson et al. (2015), we apply the Lee et al.
(2014) nebular accretion models to track the gas frac-
tions of planets as they grow through mergers in the
Ed101 and Ed102 ensembles, labeling planets that acquire
a 1% atmosphere in less than 1 Myr as “gas-enveloped,”
and planets that do not as “rocky.” We compute the
final spacing between each pair of adjacent planets and
plot the resulting spacing distributions in Fig. 9. Gas-
enveloped planets end up more tightly spaced than rocky
planets. To test whether these di↵erences are statis-
tically significant, we apply a two-sample Kolmogorov-
Smirnov (K-S) test to the gas-enveloped vs. rocky distri-
butions of � from Ed102 (Fig. 9, left panel), obtaining
a p-value of 5 ⇥ 10�9. For the distributions from Ed101
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d
N

rocky

gas-enveloped

Ed102

10 20 30 40
 ∆

Ed101

Fig. 9.— Histograms of spacings � for simulated rocky plan-
ets (thin) and gas-enveloped (thick) from Ed102 (left) and Ed101

(right). Planets included have masses ranging from 2–30 M�.
Planet pairs are labeled gas-enveloped when both members of the
pair have accreted 1%-by-mass atmospheres within 1 Myr; all other
pairs are labeled rocky. The gas-enveloped planet pairs have tighter
spacings.

(right panel), we obtain p = 1.1 ⇥ 10�7. These p-values
are su�ciently small that for both the Ed102 and Ed101

ensembles, we reject the null hypothesis that the gas-
enveloped and rocky planet spacings are drawn from the
same underlying distribution.
In the Ed102 ensemble, about half of pairs with masses

2M� < M

p

< 30M� consist of two gas-enveloped plan-
ets. These pairs have lower median eccentricities (ẽ =
0.02) and inclinations (̃i = 0.8�) than pairs with one or
more rocky planets (ẽ = 0.06, ĩ = 2.5�). We apply a two-
sample K-S test to the gas-enveloped vs. rocky distribu-
tion of e (i) and obtain a p-value of 1.1⇥10�7(6⇥10�6).
We therefore reject the null hypothesis that the gas-
enveloped and rocky planet eccentricities (inclinations)
are drawn from the same e (i) distribution.
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Fig. 10.— Stacked bar charts (not histograms lying behind one
another) of spacings � for simulated rocky pairs (no shading), gas-
enveloped pairs (dark shading), and pairs of one rocky and one gas-
enveloped planet (light shading) from the Ed102 (left) and Ed100

(right) ensembles. Planets included have masses ranging from 2–
30 M�. The Ed102 ensemble has a much greater fraction of gas-
enveloped planet pairs than the Ed100 ensemble.

6.2. Moderate gas damping ! Lower bulk densities and
tighter spacings

We showed in Section 5 that a depletion factor d ⇠ 102,
corresponding to ⌃gas,1 = 17 g cm�2, produced the tight-
est final spacings.4 The planets in the Ed102 ensemble
undergo most of their growth during the gas damping
stage, as can be seen in Fig. 7: � grows most during the
gas damping stage (left panel) rather than the gas-free
stage (right panel). For the range of solid surface den-
sities explored in this ensemble (38–105 g cm�2, Table
1), the gas-to-solid ratio is ⇠0.2–0.4, so there is su�cient
disk gas locally for planets to acquire low-mass (1%) at-
mospheres without having to appeal to gas accreting in-
ward from outside 1 AU (cf. Lee & Chiang 2016).
The simulations with depletion factors that yield wider

spacings (d = 1, 10, 103, 104) also yield higher density
planets (as illustrated for d = 1 compared to d = 102 in
Fig. 10). On the one hand, when the depletion factor
is small (d = 1, 10), the planets are largely assembled
after the gas disk completely dissipates (Fig. 7, bottom
right panel): they end up with lower gas fractions and
higher densities. On the other hand, when the depletion
factor is much higher (gas-to-solid ratios of ⇠0.02–0.04
when d = 103 or ⇠0.002–0.004 when d = 104), then
there is insu�cient gas during the growth stage to create
significant atmospheres (assuming gas in the inner disk
where cores reside is not replenished from the outer disk;
see Lee & Chiang 2016 who relax this assumption). The
case d = 102 is a happy middle ground for making low-
density planets.
Median eccentricities and inclinations in the most

tightly spaced Ed102 ensemble tend to be low: ẽ = 0.04
and ĩ = 1.8� for 2M� < Mp < 30M�. In contrast,
ẽ = {0.10, 0.08, 0.08, 0.10} and ĩ = {5, 4, 4, 6�} for ensem-
bles {Ed100, Ed101, Ed103, Ed104}, respectively. Fig-
ure 11 compares the final spacing, eccentricity, and incli-
nation distributions for three ensembles (Ed100, Ed102,
and Ed104). We apply two-sample K-S tests to test
whether the di↵erences between these three ensembles

4 A depletion factor of ⇠102 relative to the MMSN corresponds
to a factor of ⇠103 depletion relative to the minimum-mass extra-
solar nebula constructed by Chiang & Laughlin (2013).

are statistically significant. We reject the null hypotheses
that the �, e, and i values for ensemble Ed102 are drawn
from the same distributions as for Ed104 or Ed100; the
p-values are less than 2⇥10�7. In contrast, we cannot re-
ject the null hypotheses that Ed100 and Ed104 are drawn
from the same distribution with respect to � (p = 0.95)
and e (p = 0.91). For i, we reject the null hypothesis that
Ed100 and Ed104 are drawn from the same distribution
(p = 0.003).

6.3. Larger collisional cross section (lower bulk density)
! Tighter spacing

From the order-of-magnitude arguments in Section 3,
we expect the spacing to scale approximately with planet
bulk density as ⇢

1/6 (Equation 15). The dependence
arises because the planet’s size determines its collisional
cross-section, which in turn a↵ects the balance between
mergers and scatterings and therefore the spacing re-
quired for an eccentricity equilibrium. Although the scal-
ing of spacing with bulk density is weak, Kepler super-
Earths span more than a factor of 10 in bulk density
(e.g., Carter et al. 2012; Wu & Lithwick 2013; Hadden &
Lithwick 2014; Weiss & Marcy 2014). We perform a suite
of 80 simulations (Eh⇢) spanning a range of ⇢ from 0.02
g/cm3 to 14 g/cm3 (these are more extreme than those
observed) and plot the dependence of � on ⇢ in Fig. 12.
Overplotted in red is a � / ⇢

1/6 line for comparison with
the upper envelope (90%), median, and lower envelope
(10%) of the simulation points (blue lines; these are com-
puted by quantile regression using the COBS package in R;
see Ng & Maechler 2007, 2015; R Core Team 2015). The
red line is steeper than the upper envelope and median,
but nearly matches the slope of the lower envelope for
⇢ > 1 g/cm3. The upper envelope may reflect systems
that overshoot their equilibrium spacings; since all Eh⇢
runs start with the same initial eccentricities and spac-
ings, lower ⇢ systems start closer to their equilibrium
spacings and are therefore more prone to overshooting.
We conclude that smaller ⇢ indeed produces tighter spac-
ings. Planets with larger ⇢ also have larger median e and
i: ẽ = 0.06 and ĩ = 1.9� for planets with ⇢ < 1 g cm�3

vs. ẽ = 0.10 and ĩ = 5.2� for planets with ⇢ > 1 g cm�3.
The dependence of spacing on collisional cross section

motivates a more realistic treatment of the planets’ com-
positional and collisional evolution. Here we assumed
that the bulk density remains constant as the planets
grow from embryos to super-Earths, but ideally simula-
tions should account for the change in density as material
is compacted and atmospheres are accreted or eroded.
The collisional prescription used here is overly simplis-
tic and does not account for the internal structure of the
planet: some or all of the low-density planets from Kepler
are thought to be rocky cores with rarefied atmospheres
and hydrodynamic simulations are needed to accurately
assess the collisional outcomes, including the dependence
on the collisional impact parameter.

6.4. Shorter orbital periods ! Wider spacings and
higher bulk densities

From Eqn. 15, we expect tighter spacings at smaller
orbital periods. However, when we plot the final � vs.
semi-major axis in Fig. 13 (using ensemble Eh), we see
the opposite trend: wider spacings at smaller semi-major
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2, which has moderate gas damping during the first 1 Myr, exhibits the tightest spacings and smallest
eccentricities and inclinations.
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Fig. 12.— Spacing � vs. planet bulk density ⇢ from the Eh⇢ suite
of simulations, where ⇢ is the assumed constant bulk density that
we assign and which defines the collisional cross section. The red

line is the � = 22
�
⇢/g cm�3

�1/6
scaling expected from Eqn. 15.

The blue lines model the upper envelope (90%), median, and lower
envelope (10%) of the simulation data, computed using quantile
regression. The red line is steeper than the upper envelope and
median, but approximates the slope of the lower envelope for ⇢ > 1
g/cm3.

axes. We hypothesize that this behavior arises because
of the particular solid surface density power law we have
chosen. For ↵ = �3/2 (Section 2), embryo masses in-
crease with a, resulting in more massive distant planets.
These distant planets gravitationally stir closer-in plan-
ets, necessitating wider spacings to achieve an eccentric-
ity equilibrium.
To test this hypothesis, we run an additional ensemble

of simulations (Eh↵-2; Table 1) with ↵ = �2, resulting
in an embryo mass that is constant with semi-major axis.
We find spacings similar to those of the Eh ensemble at
longer orbital periods, but tighter spacings than the Eh
ensemble at shorter orbital periods. In the bottom panel
of Fig. 13, we plot the time evolution of the median �.
For a > 0.3 AU, the evolution proceeds similarly regard-
less of ↵. For a < 0.3 AU, the mergers begin earlier in
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Fig. 13.— Top: Spacing � vs. semi-major axis from
simulations with our default surface density profile ⌃

z

=
⌃

z,1(a/AU)�3/2 (black, ensemble Eh) and with a steeper profile
⌃

z

= ⌃
z,1(a/AU)�2 (red, ensemble Eh↵-2) that results in a con-

stant isolation mass with semi-major axis (Eqn. 4). For ↵ = �3/2,
� decreases with semi-major axis; for ↵ = �2, � is constant
with semi-major axis. Bottom: Time evolution of average � for
↵ = �3/2 (black) and ↵ = �2 (red) for a < 0.3 AU (dashed) and
a > 0.3 AU (solid). The evolution di↵ers between the ↵ = �3/2
and ↵ = �2 ensembles in the inner disk (a < 0.3 AU) but not in
the outer disk (a > 0.3 AU).

the ↵ = �3/2 ensemble, implying that eccentricities are
more quickly excited and orbits cross earlier. All of these
results are consistent with our hypothesis that massive
planets in the outer disk can contribute significant “non-
local” stirring, particularly for shallow surface density
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profiles.
The results of this subsection are consistent with a

recent study by Moriarty & Ballard (2015) who sim-
ulated the growth of super-Earths in disks with {↵ =
�5/2,�3/2,�1/2}. They found tighter spacings, higher
multiplicities, and smaller eccentricities and inclinations
for planets formed in steeper ↵ disks. The di↵erences are
most marked for the shortest period planets (see their
Figs. 3 and 4).
In summary, for disks with solid surface density profiles

less steep than ↵ = �2, planets at shorter orbital periods
form denser and more widely spaced. For the ↵ = �3/2
profile used throughout this work, shorter period planets
tend to have smaller core masses; they are expected to
accrete less gas from the nebula and to more easily lose
what little envelopes they may have gathered to pho-
toevaporation. Short period planets also tend to have
larger median eccentricities and inclinations (ẽ = 0.08
and ĩ = 4� for a < 0.3 AU in the Eh ensemble) than do
longer period planets (ẽ = 0.05 and ĩ = 2� for a > 0.3
AU).

7. COMPARISON TO Kepler MULTI-TRANET SYSTEMS

We make some basic comparisons to the Kepler sam-
ple to assess how the conditions for late-stage planet for-
mation explored in Sections 3–6 manifest in Kepler ob-
servables. We convert our simulated planets to tranets
by imposing a rough sensitivity cut of M

p

> 2M� and
P < 200 days. For each simulated system, we generate
104 systems randomly oriented in space with respect to
an observer. The subset of planets that transit comprise
our tranet sample. We plot spacings from the Ed102 and
Ed104 ensembles in Fig. 14, row 1, left panel. Compared
to Fig. 11 (intrinsic planet spacings), observational selec-
tion e↵ects slightly decrease the mode of the distribution
of tranet spacings and enhance the tail.
To compare our synthetic � distribution with that

based on observations, we queried the cumulative Kepler
candidates from the NASA Exoplanet Archive (March
16, 2015), restricting our sample to host stars with
4100K < Te↵ < 6100K, 4 < log g < 4.9, and Kepler mag-
nitude < 15, and selecting for systems in which at least
one planet has R < 4R�. Statistical modeling of the
potential astrophysical false positive population has re-
vealed that less than 10% of the candidates are false pos-
itives (Morton & Johnson 2011; Fressin et al. 2013), al-
lowing us to treat the sample as representative of true
planets. We use the Wolfgang et al. (2015) probabilistic
mass-radius relation to convert the observed candidate
periods to a � distribution. The resulting distribution is
not sensitive to the exact mass-radius relation used (Fang
& Margot 2013).5 The observed spacing distribution has
a mode � ⇠ 18, similar to our most tightly spaced dis-
tributions (e.g., Ed102 from our ensembles that include a
gas damping stage), but also has a tail more consistent
with our wider-spaced distributions.
Following Hansen & Murray (2013), we compare sev-

eral other properties of our simulated tranets to the ob-
served Kepler planets. In the left panels of Fig. 14, we
compare period ratio (row 2), number of tranets per sys-

5 We use the same mass-radius relationship for planets with dif-
ferent period ratios and spacings despite our expectation from Sec-
tion 6 that more tightly spaced planets have lower densities.

tem (row 3), and transit duration ratio (row 4) distribu-
tions. The transit duration ratio of a pair of planets (the
inner labeled “1” and the outer labeled “2”) is:
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where B is the transit impact parameter and ! the argu-
ment of periapse. As argued by Fabrycky et al. (2014),
the duration ratio distribution gives insight into the mu-
tual inclinations. In flatter systems, the inner planet in
a pair tends to have a smaller impact parameter, skew-
ing the ⇠ distribution to values greater than 1. Both the
mutual inclinations and eccentricities a↵ect the width of
the ⇠ distribution, but mutual inclination has a stronger
e↵ect because a small change in inclination has a strong
e↵ect on B, whereas a small change in e a↵ects ⇠ only
modestly.
The ensembles that produce the widest spacings

(represented by Ed104 in Fig. 14) also produce the
largest period ratios, the lowest multiplicities, and the
widest/least-skewed ⇠. They overproduce single tranets
and underproduce high multiplicity systems. Their spac-
ing, period ratio, and ⇠ distributions match the tails of
the observed distributions but not the peak. The Hansen
&Murray (2013) initial conditions also result in spacings,
period ratios, and ⇠ distributions that are too broad.6

In contrast, the ensembles that produce the tightest
spacings (exemplified by the intermediate damping en-
semble, Ed102, in Fig. 14) match the peaks of the ob-
served spacing and period ratio distributions but not the
tails. They overproduce high multiplicity systems and
underproduce single tranets. They produce a ⇠ distribu-
tion that is too narrow and skewed.
Rather than resembling a single one of our simulated

ensembles, the observed distributions appear to com-
prise a mixture of ensembles. The simulated distribu-
tions from one ensemble can either match the peaks or
tails of the observed distributions, but not both. In the
right column of Fig. 14, we combine the tranets from a
tightly spaced, low mutual inclination ensemble (Ed102)
with a widely spaced, larger mutual inclination ensem-
ble (Ed104). For the combined distribution, we use all
the Ed102 tranets and randomly draw 50% of the gen-
erated Ed104 tranets (where the 50% weighting is a free
parameter that we chose to match the observations). The
resulting mixed tranet population reproduces well both
the peaks and tails of the observed �, period ratio, and ⇠

distributions, in addition to the relative occurrence rates
of single and multiple tranets in the observed multiplicity
distribution. What remains to be explained is the popu-
lation of planets with the smallest period ratios ⇠1–1.5
and the tightest spacings � . 10. We speculate that
these close neighbors may reflect orbital migration, ei-
ther of super-Earths or their progenitor cores.
Is a mixture of two populations truly necessary? The

Ed104 ensemble is clearly a poor match to the observed
distribution, but the improvement of the combined pop-
ulation over Ed102 is less obvious. We perform some
statistical tests to help decide this issue. A two-sample

6 Although Hansen & Murray (2013) report an underproduction
of single tranets, we find an excess of single tranets for our ensemble
of simulations using their initial conditions (not shown).
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4:Ed102). The mixture
matches the observed distributions well except that it is missing the tightest spacings and smallest period ratios.
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K-S test applied to the distribution of transit duration ra-
tios (Fig. 14, row 4) leads us to reject the null hypothesis
that the observed distribution and the Ed102 distribution
are drawn from the same distribution (p-value 0.0004);
at the same time, we cannot reject the null hypothesis
that the observed and combined-group period ratios are
drawn from the same distribution (p-value 0.02). Ap-
plying the K-S test to the period ratio distributions (row
2), we reject the null hypothesis that the observed period
ratios are drawn from any of the simulated distributions
– if we consider the full range of period ratios. But if we
restrict our attention to period ratios greater than that
of the 3:2 resonance, we find that we cannot reject the
null hypothesis that the observed and combined-group
period ratios are drawn from the same distribution (p-
value 0.06), while still rejecting the null hypothesis that
the observed period ratios and Ed102 period ratios are
drawn from the same distribution (p-value 0.004). When
we apply the K-S test to the � distributions (row 1),
we reject the null hypothesis that the observed spacings
are drawn from any of the simulated distributions (Ed104,
Ed102, or combined) — even if we make a cut for � > 20.
Finally, we consider the tranet multiplicity distribution
(row 3), for which a K-S test is inappropriate because
the distribution is spread across a small number of inte-
gers. If we assume Poisson uncertainties and add them
in quadrature, the observed ratios of tranet multiplici-
ties are 3.55 ± 0.24, 2.78 ± 0.33, 2.6 ± 0.5, 3.5 ± 1.2, and
6±4 for 1:2, 2:3, 3:4, 4:5, and 5:6 tranet systems, respec-
tively. In Ed102, these ratios are 2.5, 3.6, 1.7, 2.6, and
2.3 (chi-squared of 27), whereas for the mixture model,
these ratios are 3.6, 4.3, 2.0, 2.7, and 2.3 (chi-squared
of 23). Therefore the mixture model represents an im-
proved match to the observations; it matches the ob-
served distribution well except that it overproduces two
tranet systems relative to three tranet systems. In sum,
the mixture model o↵ers quantitative improvements for
matching three out of the four observables in Fig. 14.
The purpose of the K-S and chi-squared statistics com-

puted here is to quantify the significance of features we
see in the plots, such as a claimed di↵erence between
two distributions, or a putative improvement of a mix-
ture model over a single ensemble. Our aim is to ensure
that the features discerned by eye are statistically signif-
icant and not due to chance and/or insu�cient sample
size. We caution that because of the simplifications in
our simulations (including their limited 30 Myr times-
pan), these statistics should not be used to fine-tune our
simulation parameters to match the observations.
When we extended the simulated timescale of the

Ed102 ensemble from 30 Myr to 180 Myr, the distri-
butions of tranet spacing, period ratio, and duration
ratio remained just as di↵erent from the observed dis-
tributions, but the distribution of tranet multiplicities
changed to provide a better match to the observed distri-
bution. As discussed in Section 5.2, performing extended
timescale simulations is an important next step for a de-
tailed quantitative comparison to the observations.
Even if a single one of our ensembles could be made to

adequately match the observations, our argument that
the data support two modes of planet formation — re-
flecting gas-rich vs. gas-poor environments — would still
carry weight. The ensemble Ed102 is itself a mixture

model to a degree, since it contains simulations having a
range of solid surface densities. Core coagulation times
are exponentially sensitive to solid surface density (Daw-
son et al. 2015). For solid surface densities toward the
upper end of the range in Ed102, cores coagulate suf-
ficiently quickly that gas is still present at the end of
coagulation. For solid surface densities toward the lower
end of the range, cores coagulate more slowly, in environ-
ments drained of gas. The thesis of our paper is that the
observations implicate two modes of core coagulation for
super-Earths: a gas-rich mode (but not too gas-rich; see
Lee et al. 2014 and Lee & Chiang 2016) and a gas-poor
mode.
A mixture of two populations is consistent with the sta-

tistical study by Ballard & Johnson (2014) of M-dwarf
systems; using a parametric mixture model for the dis-
tribution of tranets, they found evidence for two popu-
lations, one spawning single tranets and another of high
tranet multiplicity. Ballard & Johnson (2014) gave more
weight to systems producing single tranets (1:1) than we
do (0.5:1). Here we find that a mixture reproduces not
only the multiplicity statistics but also the ⇠, �, and pe-
riod ratio distributions. In terms of the implications of
our results for planet formation, our mixture represents
a set of planets that underwent most of their growth in
the presence of some residual gas (Ed102), plus another
set that assembled after the gas disk had completely dis-
sipated (Ed104; this ensemble could be replaced with one
or more of the Ed103, Ed101, Ed100 ensembles with dif-
ferent weightings).
Among systems with two or more tranets, the median

eccentricity and inclination in ensemble Ed102 are 0.02
and 0.7�, respectively. Without invoking tidal circular-
ization, the median eccentricity is in good agreement
with the Rayleigh parameter �

e

= 0.018+0.005
�0.004 (corre-

sponding to a median ẽ = 0.02) measured by Hadden
& Lithwick (2014) for planets with transit timing varia-
tions. Furthermore, among our simulated pairs in Ed102

with period ratios less than 2, the median eccentricity
is as small as ẽ = 0.003. The ensemble Ed102 is the
one that we argued in Section 6 should also produce the
lowest density planets. In contrast, the ensembles that
we argued should produce higher density planets have
median tranet eccentricities of {0.11, 0.08, 0.08, 0.11} and
inclinations of {1.6, 1.6, 0.9, 1.9�} for ensembles {Ed100,
Ed101, Ed103, Ed104}, respectively. For period ratios
less than 2, the corresponding median eccentricities are
ẽ = {0.07, 0.05, 0.05, 0.10}. The lower eccentricities and
lower bulk densities of the Ed102 ensemble may account
for the result of Hadden & Lithwick (2014) that larger
planets (⇠2.5–4 R�) having lower densities (Lopez &
Fortney 2014; Rogers 2015) have smaller eccentricities
than planets < 2.5R�.
Another observational application of our simulations

is to the finding of Weiss & Marcy (2014) that plan-
ets with masses measured via transit timing variations
(TTVs, which necessarily involve tight orbital spacings)
have lower bulk densities than those measured via radial
velocities (which are easier to measure for more widely
separated planets; see also Wolfgang et al. 2015, and in
particular Ste↵en 2016 for how selection e↵ects based
on mass may contribute to the result of Weiss & Marcy
2014). For the mixed ensemble plotted in the right panel
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of Fig. 14, period ratios less than 2 (i.e., period ratios
typical for TTV planets) are dominated by planets in the
Ed102 ensemble, which are expected to have lower densi-
ties. Furthermore, as described in Section 6.1, for a par-
ticular gas depletion factor and a range of solid surface
densities, planets of a given mass having tighter spacings
will also typically have lower densities.

8. CONCLUSIONS

The circumstances of the giant impact era of planet for-
mation link super-Earths’ orbital properties to their com-
positions. Two types of systems are established: dynam-
ically hot (widely spaced, eccentric, mutually inclined)
planets with high bulk densities, and dynamically cold
(tightly spaced, circular, flat) planets with gas envelopes
and low densities. Our Solar System’s terrestrial planets
fall into the former category. Typical orbital properties
for the latter category — Hill spacings � ⇠ 20, i ⇠ 0.8�,
and e ⇠ 0.02 — are dynamically colder. The Hill spac-
ing is set by an eccentricity equilibrium between gravi-
tational scatterings, which tend to increase e, and merg-
ers, which tend to damp it (Section 3). This eccentricity
equilibrium predicts that lower inclination systems end
up with smaller Hill spacings, a result that is confirmed
numerically.
The two most important disk properties for determin-

ing the orbits and compositions of planets are the disk’s
solid surface density and its late-stage residual gas sur-
face density (Section 6). Disks with higher solid surface
density and moderate gas surface density (depleted by a
factor of ⇠100 relative to the minimum-mass solar neb-
ula) tend to produce tightly spaced, low e and i, low den-
sity planets. Higher solid surface density enables cores to
form faster — fast enough for cores to accrete volumetri-
cally significant atmospheres from residual gas before it
dissipates completely (Section 6.1; see also Dawson et al.
2015 who make the same point). A moderate late-stage
gas surface density has enough dynamical friction to flat-
ten the system — allowing for an eccentricity equilibrium
to be achieved at tighter spacings (Section 3) — but not
so much that mergers up to the final core mass are pre-
vented. Higher gas surface densities prevent mergers, so
cores grow only after the disk gas dissipates su�ciently.
If gas surface densities are too low — and if the inner
disk gas is not replenished (see Lee & Chiang 2016 for
a discussion of replenishment) — then planets fail to ac-
quire significant atmospheres. Hence a happy medium
for the gas density is required to produce tightly spaced,
low density planets.
We found that we need a mixture of dynamically hot

and dynamically cold systems to reproduce the observed
Hill spacings, period ratios, tranet multiplicities, and
transit duration ratios of Kepler super-Earths (Section
7). We can match the observed distributions with a com-
bination of moderate and lower (at the time of core as-
sembly) gas surface densities, in concert with a range of
solid surface densities. However, we under-produce the
tail of ultra tightly-spaced systems (period ratios < 1.5;
e.g., Kepler-36, Carter et al. 2012). Our findings are con-
sistent with previous work that modeled the multiplicity
distribution parametrically and found the need for two
populations to match the observed tranet multiplicity
distribution (Johansen et al. 2012; Ballard & Johnson
2014). Without needing to invoke tidal circularization,

our simulations with moderate residual gas surface den-
sity can account for the low eccentricities found by Had-
den & Lithwick (2014) and Van Eylen & Albrecht (2015).
Our finding that lower planetary bulk densities are linked
to tighter spacings and smaller eccentricities can poten-
tially account for the discovery by Hadden & Lithwick
(2014) that larger super-Earths (having lower densities,
e.g., Lopez & Fortney 2014; Rogers 2015) have smaller
eccentricities. It can also help to explain the result of
Weiss & Marcy (2014) that planets with masses mea-
sured via transit timing variations (which are necessarily
more tightly spaced) have lower bulk densities.
Over the past couple decades, a variety of correlations

have been uncovered between the orbital and composi-
tional properties of planetary bodies and properties of
their host stars. These include the connection between
giant planet occurrence and host star metallicity (e.g.,
Santos et al. 2001; Fischer & Valenti 2005); the correla-
tion between spin-orbit misalignment and host star tem-
perature (e.g., Schlaufman 2010; Winn et al. 2010); the
relation between planet radius and host star metallicity
(e.g., Buchhave et al. 2014; Schlaufman 2015; Dawson
et al. 2015); the correlation between dynamical excitation
and host star metallicity (e.g., Dawson & Murray-Clay
2013); and the connection between Kuiper belt objects’
compositional and orbital properties (e.g., Tegler & Ro-
manishin 2000; Levison & Stern 2001; Stephens & Noll
2006; Brucker et al. 2009). The theoretical connections
we found here between super-Earths’ orbital properties
and their compositions provide a new test of formation
theories.
The simplified simulations and first-order compar-

isons to observations presented here can be improved
upon. We caution that we did not incorporate photo-
evaporation of planetary atmospheres into our models
so future studies that search for the predicted links be-
tween orbital and compositional properties should either
account for photo-evaporation or be limited to periods
beyond ⇠15 days. Eccentricity damping from residual
gas could be incorporated explicitly into the scaling ar-
guments in Section 3. More realistic simulations could
implement prescriptions for atmospheric growth through
accretion (Lee et al. 2014; Lee & Chiang 2015) and colli-
sional outcomes (Stewart & Leinhardt 2012; Schlichting
et al. 2015) into mercury6. Longer integrations (e.g.,
to 10 Gyr instead of the 30 Myr reported here) are im-
portant for detailed quantitative comparisons to the ob-
served sample, because the median spacing increases by
about 10% per decade in integration time (Section 5.2;
see also Pu & Wu 2015).
Recently Moriarty & Ballard (2015) showed that a

combination of planets formed from disks of solids with
steep and shallow surface density profiles (a range of ↵;
Eqn. 4) could reproduce the observed distributions of
multiplicity, period ratio, and transit duration ratio. To
distinguish between theories that rely on di↵erences in
surface density slope (Moriarty & Ballard) or on di↵er-
ences in the normalizations of both gas and solid sur-
face densities (this work), future studies should test how
tranet properties vary with orbital period. They should
also probe for correlations between orbital and composi-
tional properties — correlations that our work predicts.
A follow-up study focused on planets near resonance

could determine whether the gas damping treated here



18 Dawson, Lee, & Chiang

provides su�cient dissipation to produce the observed
asymmetry in period ratios near the 3:2 and 2:1 res-
onances without invoking tides (e.g., Lithwick & Wu
2012). Finally, the origin of the most tightly spaced plan-
ets (period ratios < 1.5) remains a mystery and may be
a signature of migration.
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